Исчерпание запасов креатинфосфата в мышцах является основной причиной утомления при беге
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Исчерпание запасов креатинфосфата в мышцах является основной причиной утомления при беге

БИОХИМИЧЕСКИЕ ОСНОВЫ ПИТАНИЯ

1. Основной обмен у мужчин составляет: в) 1600-1800 ккал

2 Калорийность суточного рационау взрослого человека, не занимающегося г) 2200-2500 ккал

3 Балластным веществом является: г) целлюлоза

Протеолитические ферменты могут одномоментно расщепить не более:в) 90-100 г белков

5 Усвоение пищевых жиров осуществляется с участием: б) желчных кислот

Расщепление пищевых белков в желудке осуществляется с участием: в) соляной кислоты

При увеличении суточных энергозатрат на 500 ккал потребность в белках возрастает на: б) 10 г/сутки

БИОЭНЕРГЕТИКА МЫШЕЧНОЙ РАБОТЫ

1Гликоген является основным источником энергии при выполнении нагрузок: б) субмаксимальной мощности

2. Аэробная работоспособность преимущественно зависит от содержания в мышцах: в) митохондрий

3 Основной источник энергии при бегена средние дистанции: б) гликолиз

4 Дольше всего максимальная скорость сохраняется:г) у тканевого дыхания

5 Креатинфосфатная реакция является основным источником энергии при беге:а) на 100 м

6 Быстрое исчерпание запасов креатинфосфата в мышцах наблюдается при выполнении нагрузок в зоне: а) максимальной мощности

7 Основной причиной утомления при беге на 10000 м является: г) снижение в мышцах скорости тканевого дыхания

8 Максимальное повышение кислотности наблюдается при беге в) на 1000 м

9 Аэробный ресинтез АТФ осуществляется при: г) расщепление гликогена до СО2 и Н2О

10 Время развертывания гликолитического ресинтеза АТФ:б) 20-30 с.

11 Предельная продолжительность выполнения алактатных нагрузок а) 10-15 с

12 Кетоновые тела служат источником энергии для ресинтеза АТФ: в) аэробного

ВИТАМИНЫ

1. Витамины входят в состав:б) коферментов

2. Цинга возникает при дефиците в организме витамина: г) С

3. Цианкобаламин (витамин В12) участвует в: б) кроветворении

6. Анемия (малокровие) развивается при дефиците в организме витамина: в) В12

7. Снижение темновой адаптации возникает при дефиците в организме витамина: а) А

8. В процессе окостенения принимает участие витамин: в) D

9. Витамин В6 имеет еще название: б) пиридоксин

10. В процессе кроветворения принимает участие витамин: г) Вс

11. Эндогенной причиной возникновения гиповитаминозов является: а) нарушение всасывания витаминов

12. Экзогенной причиной возникновения гиповитаминозов является: б) неправильное приготовление пищи

ГОРМОНЫ

1. Гормоны выполняют в организме функцию: в) регуляторную

2. Синтез гликогена из глюкозы ускоряет гормон: в) инсулин

3. Из аминокислоты тирозина в организме образуется гормон: а) адреналин

4. Белковую природу имеет гормон: в) соматотропин

5. Снижение концентрации глюкозы в крови вызывает гормон: в) инсулин

6. Распад гликогена в мышцах ускоряет гормон: а) адреналин

7. Йод необходим для образования гормона: г) тироксина

8. В поджелудочной железе синтезируется гормон: б) глюкагон

9. Стероидное строение имеет гормон: в) кортикостерон

10. К катехоламинам относится гормон: а) адреналин

11. Повышение концентрации в крови глюкозы

вызывает гормон: а) адреналин

12. Синтез гликогена ускоряет гормон: б) инсулин

13. Синтез мышечных белков ускоряет гормон: в) тестостерон

ДОПИНГ

1 К допингам относится: г) эритропоэтин

2 Пробы крови и мочи для допингового контроля после вручения уведомления берутся не позднее: б) 1 час.

5 К допинговым процедурам относится: г) переливание крови

Л И П И Д Ы

1. Природные жиры являются: в) триглицеридами

3 Молекула жира состоит из:б) глицерина и жирных кислот

4 Полиненасыщенной жирной кислотой является: а) линолевая

5 Температура плавления жира зависит: а) от количества двойных связей

Нуклеиновые кислоты

1 Молекулы РНК содержат углевод: г) рибозу

2 Молекулы ДНК содержат углевод б) дезоксирибозу

3 Пуриновым основанием является: а) аденин

4 В молекуле ДНК азотистое основание тимин спаривается с: а) аденином

5 Пиримидиновым основанием является: г) цитозин

6 В молекуле ДНК азотистое основание гуанин спаривается с: г) цитозином

7 В молекуле ДНК количество аденина всегда равно количеству: в) тимина

8 В молекуле ДНК азотистое основание аденин спаривается с: в) тимином

9. Двойная спираль ДНК фиксируется: а) водородными связями

10 В молекуле ДНК количество цитозина всегда равно количеству: в) гуанина

11 В генах молекулы ДНК закодирована информация о строении:) полипептидов НЕ УВЕРЕН

12 В клетках ДНК находится: г) в ядре

Дата добавления: 2016-11-02 ; просмотров: 1001 | Нарушение авторских прав

Утомление. Укажите причины развития утомления при беге на 1000м?

Основными причинами утомления при выполнении длительных упражнений большой и умеренной мощности становятся факторы, связанные со снижением уровня энергообеспечения работающих мышц (исчерпание внутримышечных запасов гликогена, накопление продуктов неполного окисления жиров, избыточное накопление NН3 и ИМФ, развитие гипогликемического состояния), а также нарушение электрохимического сопряжения в работающих мышцах и ухудшение деятельности ЦНС в условиях выраженной гипертермии, дегидратации и сдвига электролитного баланса организма. Таким образом, при выполнении длительных упражнений большой и умеренной мощности причины, приводящие к возникновению утомления, носят комплексный характер.

В большинстве случаев первичным звеном в развитии утомления при выполнении длительных упражнений большой и умеренной мощности являются изменения в объеме и характере внутримышечных энергетических субстратов. В широком диапазоне усилий при длительной работе (начиная от 25 % VO2 max и выше) значительная доля в ресинтезе АТФ приходится на окисление углеводов. Окисление жиров характерно только для упражнений, относительная мощность которых не превышает 50 % уровня VO2 max.

Рис. 4. Изменение концентрации глюкозы, жирных кислот и лактата в крови при выполнении длительных упражнений

Анаэробные источники энергии (КрФ и гликоген) оказывают заметное влияние на энергетику работы только в тех видах длительных упражнений, относительная мощность которых превышает значения лактатного и креатинфосфатного порогов, локализованных на уровне 60-75 % VO2 max. В связи с изменяющимся характером энергетического обеспечения при длительной работе изменяется и динамика основных биохимических показателей крови (рис. 4). Содержание глюкозы в крови в процессе выполнения длительной работы заметно снижается в случае, когда длительность упражнения превышает 90 мин. Содержание молочной кислоты и свободных жирных кислот в крови сохраняется на уровне покоя до тех пор, пока не будет достигнуто значительное исчерпание углеводных ресурсов организма. С этого момента содержание этих метаболитов в крови проявляет тенденцию к повышению.

Конкретные причины утомления при длительной работе могут быть обусловлены неспособностью работающих мышц поддерживать заданную скорость ресинтеза АТФ из-за снижения углеводных запасов, а также нарушениями в деятельности ЦНС из-за накопления аммиака и кетоновых тел в организме.

Таким образом, при выполнении любого упражнения можно выделить ведущие, наиболее нагружаемые звенья обмена веществ и функции систем организма, возможности которых и определяют способность спортсмена выполнять упражнения на требуемом уровне интенсивности и продолжительности. Это могут быть регуляторные системы (ЦНС, вегетативная нервная, нейрогуморальная), системы вегетативного обеспечения (дыхание, кровообращение, кровь) и исполнительная (двигательная) система.

Комплексный анализ проблемы утомления в спорте, проведенный физиологами, биохимиками, а также специалистами в области теории и методики спортивной тренировки (Я.М. Коц, Н.Н. Яковлев, В.Н. Волков, Н.И. Волков, В.Д. Моногаров, В.Н. Платонов и др.), убедительно показал, что утомление следует рассматривать как следствие выхода из строя какого-либо компонента в сложной системе органов и функций либо как нарушение взаимосвязи между ними. Ведущим звеном в развитии утомления может стать любой орган и его функция, если проявится несоответствие между уровнем физической нагрузки и имеющимися функциональными резервами. Поэтому первопричиной снижения работоспособности могут быть исчерпание энергетических резервов, тканевая гипоксия, снижение ферментативной активности под влиянием “рабочего” метаболизма тканей, нарушение целостности функциональных структур из-за недостаточности их пластического обеспечения, изменение гомеостаза, нарушение нервной и гормональной регуляции и др.

Выяснение механизмов утомления играет важную роль в практике спорта для обоснования узловых положений спортивной тренировки. В частности, утомление расценивается как фактор, стимулирующий мобилизацию функциональных ресурсов, определяющий границы оптимального объема тренирующих воздействий и обеспечивающий эффективность протекания адаптации, успешность соревновательной деятельности и профилактику переадаптации.

Мышечное утомление

Источник: «Программы тренировок», научное изд.
Автор: профессор, доктор наук Тудор Бомпа, 2016 г.

Содержание

Мышечное утомление [ править | править код ]

Спортсмены постоянно подвергаются различным типам тренировочных нагрузок, и некоторые из них превышают порог переносимости. В результате снижается адаптация, что оказывает негативное влияние на общую результативность. Когда спортсмены выходят за пределы собственных физиологических возможностей, возникает риск накопления усталости, при этом чем больше усталость, тем сильнее проявляется негативный эффект от тренировок, который выражается в низких темпах восстановления, ухудшении координации и снижении вырабатываемой энергии.

Утомление, вызываемое тренировками, может также увеличиваться, если вне тренировочной среды спортсмен дополнительно испытывает личный стресс.

Мышечное утомление, которое является следствием упражнений, зачастую ассоциируется с такими сложными с физиологической и психологической точки зрения явлениями, как перенапряжение и перетренированность. Утомление может оказывать влияние на способность спортсмена генерировать силу или мешать ему поддерживать требуемый уровень силы. Несмотря на наличие множества исследований по теме утомления, точные локации и причины данного явления остаются неизвестными. Тем не менее тренерам и инструкторам следует изучить как можно больше информации в данной области для того, чтобы иметь возможность разрабатывать оптимальные планы, направленные на недопущение утомления, перенапряжения и перетренированности своих подопечных.

Роль центральной нервной системы [ править | править код ]

Несмотря на то, что очагом утомления предположительно являются мышцы, центральная нервная система также играет важную роль, поскольку уровни нейропередачи и соответствующие физиологические состояния оказывают существенное влияние на нервную передачу, уровень гормонов и, в конечном итоге, на общее утомление. Фактически, на сегодняшний день точно установлено, что центральная нервная система ограничивает результативность гораздо в большей степени, чем это предполагалось ранее [1] [2] [3] [4] .

Центральная нервная система отвечает за два основных процесса: возбуждение и блокировку. Возбуждение является стимулирующим процессом для физической активности, в то время как блокировка является процессом ограничивающим. Во время тренировки оба процесса сменяют друг друга. В результате стимулирования центральная нервная система посылает нервный импульс к работающей мышце, вызывая ее сокращение. Скорость, мощность и частота импульса напрямую зависят от состояния центральной нервной системы. Эффективность нервных импульсов возрастает, когда преобладает возбуждение (управляемое), вследствие чего спортсмен добивается хорошего результата. Когда утомление блокирует нервную клетку, мышцы сокращаются медленнее и слабее. Таким образом, электрическое стимулирование центральной нервной системы определяет количество задействованных двигательных единиц и передачу нервных импульсов, которая, в конечном итоге, оказывает влияние на силу сокращения мышц.

Читать еще:  Зарядка в домашних условиях для начинающих

Производительность нервной клетки невозможно поддерживать очень долго, и она снижается под влиянием напряжения соревновательного или тренировочного процесса. Если высокий уровень интенсивности сохраняется, нервная клетка переходит в состояние блокировки для защиты от внешней стимуляции. Следовательно, утомление необходимо рассматривать как механизм самозащиты, предназначенный для недопущения ущерба для механизма сокращения мышцы.

Кроме того, интенсивные упражнения приводят к развитию ацидоза, который, в первую очередь, вызывается накоплением молочной кислоты в мышечной клетке. Высокий уровень ацидоза может оказывать негативное влияние на выделение кальция, необходимого для мышечного сокращения. В сущности, возбудительный нервный импульс может достигать мышечной мембраны, но будет заблокирован мембраной выделения кальция [1] .

Симптомы мышечного утомления [ править | править код ]

Тренеры должны следить за симптомами мышечного утомления. Опытный тренер всегда сможет заметить признаки утомления в силовых и скоростных видах спорта. Реакция спортсмена на взрывную деятельность замедляется, наблюдается легкое нарушение координации, и увеличивается продолжительность фазы контакта при беге на короткие дистанции, скачках и отскоках, прыжках и плиометрике. Основой данных видов деятельности является стимулирование волокон быстро сокращающихся мышц, на которые утомление оказывает большее влияние в сравнении с волокнами медленно сокращающихся мышц. Таким образом, даже незначительная блокировка центральной нервной системы оказывает влияние на задействование мышечных волокон.

В соревнованиях на выносливость утомление обычно проявляется в виде нарушения техники и, естественно, в постепенном снижении средней скорости движения.

Скелетная мускулатура генерирует силу за счет активации двигательных единиц и регулирования частоты их работы, которая постепенно увеличивается для повышения выработки энергии. Утомление, блокирующее мышечную активность, в некоторой степени можно нейтрализовать за счет стратегии чередования частоты. В результате при определенном состоянии утомления мышцы с большей эффективностью могут поддерживать уровень силы. Тем не менее, если продолжительность сокращений на максимальной интенсивности увеличивается, частота работы двигательных единиц снижается, что свидетельствует о более ярком проявлении блокировки [5] [6] .

Как было продемонстрировано в работах Марсдена, Медоуза и Мертона [7] , частота работы в конце 30-секундного сокращения при максимальной интенсивности снижается на 80 процентов в сравнении с частотой на момент начала сокращения. Аналогичные результаты были продемонстрированы в работах Де Лука и Эрим [8] и Конвит и др. [9] : по мере увеличения продолжительности сокращения, увеличивается активизация крупных двигательных единиц, при этом частота работы находится ниже обычного порога частоты активизации.

Результаты, продемонстрированные в указанных работах, должны насторожить сторонников теории увеличения силы (в особенности в американском футболе) исключительно за счет выполнения каждого комплекса до полного изнеможения. Об изъянах этой широко распространенной методики свидетельствует факт снижения рабочей частоты с каждым последующим повторением.

По мере выполнения сокращений истощаются источники энергии, результатом чего является более продолжительное время отдыха двигательной системы и снижение частоты сокращения мышцы, что, в свою очередь, приводит к снижению выработки энергии. Предположительно причиной такого нервно-мышечного поведения является утомление. Реальные факты должны сигнализировать практикующим специалистам о том, что непродолжительных перерывов на отдых (обычно в течение одной-двух минут) между двумя комплексами при максимальной нервной нагрузке недостаточно для расслабления и восстановления нервно-мышечной системы с целью обеспечения высокого уровня активизации при выполнении последующих комплексов.

При анализе функциональности центральной нервной системы во время утомления тренерам следует принимать во внимание утомление, ощущаемое спортсменом, и физические возможности спортсмена, которые достигаются во время тренировки. Когда физические возможности превышают уровень утомления, ощущаемого во время тестов или соревнований, увеличивается мотивация и, как следствие, способность преодолевать утомление.

Таким образом, следует развивать указанную способность преодолевать утомление во время соревнований, в особенности для тех видов спорта, в которых наблюдается высокая зависимость интеллектуальных качеств от утомления, например, в командных видах спорта, в видах спорта, где применяются ракетки, и в спортивных единоборствах.

Недостаток аденозитрифосфата, креатинфосфата и гликогена [ править | править код ]

В зависимости от вида деятельности, мышечное утомление возникает при истощении запасов мышечного гликогена или креатинфосфата в работающих мышцах [10] . Результат данного явления очевиден: работоспособность мышцы снижается.

Для краткосрочных высокоинтенсивных видов деятельности, таких как выполнение комплексов с небольшим количеством повторений или бег на короткую дистанцию, непосредственными источниками энергии для сокращения мышц являются аденозинтрифосфат и креатинфосфат. Истощение запасов данных веществ в мышцах ограничивает способность мышцы к сокращению (Karlsson и Saltin, 1971). Тем не менее во время отдыха происходит активная работа аэробной системы, целью которой является восстановление фосфатов за счет процесса, который называется аэробным фосфорилированием. Как следствие, даже для скоростно-силовых видов спорта необходима соответствующая аэробная среда [11] .

В мышце с пониженным содержанием гликогена в результате, например, продолжительной деятельности, носящей периодический характер, которая является типичной для командных видов спорта, скорость потребления аденозинтрифосфата превышает скорость его выработки. Результаты исследований показывают, что гликоген является жизненно необходимым веществом для обеспечения возможности мышцы поддерживать высокий уровень силы [12] и что выносливость во время продолжительной активности при средней и высокой нагрузке непосредственно зависит от количества гликогена в мышцах до начала упражнения [13] . Итак, причиной утомления может также стать недостаток гликогена в мышцах [14] .

Во время продолжительной работы при субмаксимальной нагрузке, например, при тренировке мышечной выносливости средней и большой продолжительности, источниками энергии являются жирная кислота и глюкоза. В ходе данного процесса также необходим кислород. При ограниченном поступлении кислорода вместо окисления углевода происходит окисление жирной кислоты. Максимальное окисление свободной жирной кислоты определяется притоком жирной кислоты к работающей мышце и аэробным состоянием спортсмена, поскольку аэробная тренировка повышает как поступление кислорода, так и окисляемость жирной кислоты [15] . Таким образом, причинами мышечного утомления являются недостаток кислорода, слабый уровень транспортировки кислорода и ненадлежащий кровоток [14] .

Накопление молочной кислоты [ править | править код ]

После нескольких секунд максимального сокращения анаэробная лактатная система начинает использовать мышечный гликоген для производства АТФ, при этом начинает накапливаться лактат. Совокупное одновременное снижение уровня креатинфосфата и накопление молочной кислоты снижает способность мышцы к максимальному сокращению [16] . Это имеет важное значение для движений, требующих быстроты или силы сокращения, поскольку их основой является сокращение мощных быстро сокращающихся волокон. Такие действия являются анаэробными, они выполняются за счет анаэробной энергии и вызывают повышение уровня выработки и накопления молочной кислоты. В ходе выполнения высокоинтенсивных комплексов до отказа (при высокой нагрузке), если общая продолжительность действий, осуществляемых под напряжением во время комплекса, превышает восемь секунд, быстро сокращающиеся волокна вырабатывают большое количество лактата. При этом блокируется любое непосредственное стимулирование, исходящее от центральной нервной системы. Таким образом, последующий высокоинтенсивный комплекс может выполняться только после более продолжительного периода отдыха.

Биохимический обмен, происходящий во время сокращения мышц, приводит к высвобождению ионов водорода, что, в свою очередь, вызывает ацидоз или еще не полностью изученное «лактатное утомление», которое, по всей видимости, определяет точку истощения [15] . Чем активнее мышца, тем выше концентрация ионов водорода и, соответственно, тем выше уровень ацидоза крови. Ионы водорода также стимулируют высвобождение гормона роста из аденогипофиза [17] [18] [19] [20] . Несмотря на название, основной эффект, оказываемый всплеском гормона роста в результате метаболически интенсивной тренировки, заключается в усилении липолиза (сжигания жира) [21] [22] [23] [24] , который является одной из причин эффективности лактатных тренировок при снижении веса. Среди других причин можно выделить высокий расход калорий в минуту и повышенное потребление кислорода после выполнения упражнений, которые усиливают обмен веществ, продолжающийся до 24 часов. Несмотря на широко распространенное убеждение в обратном, всплеск гормона роста или, по сути, тестостерона [25] , вызванный упражнениями, не оказывает влияния на рост мышц [26] .

В результате дезактивации тропонина, являющегося одним из компонентов белков, повышенный ацидоз также блокирует связующую способность кальция. Поскольку тропонин принимает активное участие в сокращении мышечной клетки, его дезактивация может привести к возникновению утомления [27] . Дискомфорт, провоцируемый ацидозом, также может быть одной из причин психологического утомления [28] . Тем не менее мышечный ацидоз не является причиной болезненного ощущения в мышцах после тренировки. На самом деле, как показано в таблице, удаление лактата происходит достаточно быстро, поскольку он окисляется мышечными волокнами, а также трансформируется печенью обратно в глюкозу (посредством цикла Кори).

Время, необходимое для удаления лактата из крови и мышц

Утомление при физических нагрузках

Утомление – это временное снижение работоспособности, вызванное глубокими биохимическими, функциональными, структурными сдвигами, возникающими в ходе выполнения физической работы, которое проявляется в субъективном ощущении усталости. В состоянии утомления человек не способен поддерживать требуемый уровень интенсивности и (или) качества (техники выполнения) работы или вынужден отказаться от ее продолжения.

С биологической точки зрения утомление – это защитная реакция, предупреждающая нарастание физиологических изменений в организме, которые могут стать опасными для здоровья или жизни.

Механизмы развития утомления многообразны и зависят в первую очередь от характера выполняемой работы, ее интенсивности и продолжительности, а также от уровня подготовленности спортсмена. Но в каждом конкретном случае могут выделяться ведущие механизмы утомления, приводящие к снижению работоспособности.

При выполнении разных упражнений причины утомления неодинаковы. Рассмотрение основных причин утомления связано с двумя основными понятиями:

  1. Локализация утомления, т. е. выделение той ведущей системы (или систем), функциональные изменения в которой и определяют наступление состояния утомления.
  2. Механизмы утомления, т. е. те конкретные изменения в деятельности ведущих функциональных систем, которые обусловливают развитие утомления.
Читать еще:  Ходьба на беговой дорожке с наклоном польза

Три основные системы где локализуется утомление

  1. регулирующие системы — центральная нервная система, вегетативная нервная система и гормонально-гуморальная система;
  2. система вегетативного обеспечения мышечной деятельности — системы дыхания, крови и кровообращения, образование энергетических субстратов в печени;
  3. исполнительная система — двигательный (периферический нервно-мышечный) аппарат.

Механизмы утомления

  • Развитие охранительного запредельного) торможения;
  • Нарушение функции вегетативных и регуляторных систем;
  • Исчерпание энергетических резервов и потеря жидкости;
  • Образование и накопление в организме лактата;
  • Микроповреждения мышц.

Развитие охранительного (запредельного) торможения

При возникновении в организме во время мышечной работы биохимических и функциональных сдвигов с различных рецепторов (хеморецепторов, осморецепторов, проприорецепторов и др.) в ЦНС по афферентным (чувствительным) нервам поступают соответствующие сигналы. При достижении значительной глубины этих сдвигов в головном мозге формируется охранительное торможение, распространяющееся на двигательные центры, иннервирующие скелетные мышцы. В результате в мотонейронах уменьшается выработка двигательных импульсов, что в итоге приводит к снижению физической работоспособности.

Субъективно охранительное торможение воспринимается как чувство усталости. Усталость снижается за счет эмоций, действия кофеина или природных адаптогенов. При действии седативных средств, в том числе препаратов брома охранительное торможение возникает раньше, что приводит к ограничению работоспособности.

Нарушение функции вегетативных и регуляторных систем

Утомление может быть связано с изменениями в деятельности вегетативной нервной системы и желез внутренней секреции. Роль, последних особенно велика при длительных упражнениях (А. А. Виру). Изменения в деятельности этих систем могут вести к нарушениям в регуляции вегетативных функций, энергетического обеспечения мышечной деятельности и т. д.

При выполнении особенно продолжительной физической работы, возможно снижение функции надпочечников. В результате уменьшается выделение в кровь таких гормонов как адреналина, кортикостероидов, вызавающих в организме сдвиги благоприятные для функционирования мышц.

Рис. 1. Гормоны в крови при нагрузке 65% от МПК

Причиной развития утомления могут служить многие изменения, в деятельности, прежде всего дыхательной и сердечно-сосудистой систем , отвечающих за доставку кислорода и энергетических субстратов к работающим мышцам, а также за удаление из них продуктов обмена. Главное следствие таких изменений — снижение кислородтранспортных возможностей организма работающего человека.

Снижение функциональной активности печени также способствует развитию утомления, поскольку во время мышечной работы в печени протекают такие важные процессы как гликогенез, бета–окисление жирных кислот, кетогенез, глюконеогенез, которые направлены на обеспечение мышц важнейшими источниками энергии: глюкозой и кетоновыми телами. Поэтому для спортивной практики используют гепатопротекторы для улучшение обменных процессов в печени.

Таблица 1. Внешние признаки утомления при физических напряжениях

Признаки Небольшое физическое утомление Значительное утомление (острое переутомление I степени) Резкое переутомление (острое переутомление II степени)
Дыхание Учащенное (до 22-26/мин на равнине и до 3-6/мин на подъеме) Учащенное (38-46/мин), поверхностное Резкое (более 50-60/мин), учащенное, через рот, пере­ходящее в отдельные вдохи, сменяющееся беспорядоч­ным дыханием
Движение Бодрая походка Неуверенный шаг, легкое покачива­ние, отставание на марше Резкие покачивания, появ­ление некоординированных движений, отказ от дальней­шего движения
Общий вид, ощущения Обычный Усталое выражение лица, нарушение осанки (сутулость, опущенные плечи), снижение интереса к окружающему Изможденное выражение лица, резкое нарушение осанки («вот-вот упадет»), апатия, жалобы на резкую слабость (до прострации), сильное сердцебиение, головная боль, жжение в груди, тошнота, рвота
Мимика Спокойная Напряженная Искаженная
Внимание Хорошее, безошибочное выполнение указаний Неточное вы­полнение команд, ошибки при пере­мене направления Замедленное, неправильное выполнение команд; воспринимается только громкая команда
Пульс 110—150 уд/мин 160—180 уд/мин 180-200 уд/мин и более

Исчерпание энергетических резервов и потеря жидкости

Как известно, выполнение физической работы сопровождается большими энергозатратами, и поэтому при мышечной деятельности происходит быстрое исчерпание энергетических субстратов . Под этим понимается та часть углеводов, жиров и аминокислот, которая может служить источником энергии при выполнении мышечной работы. Такими источиками энергии считается мышечный креатинфосфат , который может полностью использован при интенсивной мышечной работе, большая часть мышечного и печеночного гликогена , часть запасов жира , находящаяся в жировых депо, а также аминокислоты, которые начинают окисляться при очень продолжительных нагрузках. Энергетическим резервом можно считать поддержание в крови во время физической работы необходимого уровня глюкозы.

Рис. 2. Динамика АТФ, АДФ и креатинфосфата при работе

Рис. 3. Схема изменения содержания глюкозы в крови и гликогена в печени и скелетных мышцах во время длительной работы

Рис. 4. Расход гликогена в мышце при длительной нагрузке и субъективное ощущение тяжести нагрузки

Рис. 5. Энергетическая емкость различных источников

Исчерпание энергетических субстратов, ведет к снижению выработки АТФ и снижению баланса АТФ/АДФ. Снижение этого показателя в нервной системе приводит к нарушению формирования и передачи нервных импульсов, в.т.ч. управляющих скелетной мускулатурой. Такое нарушение в функционировании НС является одним из механизмов развития охранительного торможения.

Снижение скорости синтеза АТФ в клетках скелетных мышц и миокарда нарушает сократительную функцию миофибрилл, следствием чего становится снижение мощности выполняемой работы.

Для поддержания энергетических ресурсов при выполнении продолжительной работы (лыжные гонки, марафон и др. шоссейные велогонки) организуется питание на дистанции.

Обильное потоотделение во время длительных спортивных упражнений сопровождается значительной потерей хлоридов и изменением количественного соотношения ионов натрия, калия и кальция, хлора и фосфора в крови и тканях тела, что так же ведет к понижению работоспособности.

Утомление при длительной работе в условиях высокой температуры и высокой влажности окружающей среды может усиливаться в результате перегревания. Это нарушает деятельность центральной нервной системы и может привести к тепловому удару (головная боль, помутнение сознания, а также в тяжелых случаях потеря его).

Фактором, способствующим развитию утомления, является и охлаждение организма.

Образование и накопление в организме лактата

Молочная кислота в наибольших количествах в организме образуется при выполнении нагрузок субмаксимальной мощности, что существенно влияет на функционирование мышечных клеток.

В условиях повышенной кислотности снижается сократительная способность белков, участвующих в мышечной деятельности. Снижается активность белков-ферментов АТФ-азная активность миозина и активность кальциевой АТФ-азы (кальциевый насос). Изменяются свойства мембранных белков, что приводит к повышению проницаемости биологических мембран.

Лактат приводит к набуханию мышечных клеток, вследствие поступления в них воды что снижает сократительные возможности мышц.

Предполагается, что лактат связывает часть ионов Са и тем самым ухудшает управление процессами сокращения и расслабления мышц, что особенно сказывается на скоростных свойствах мышц.

Рис. 6. Динамика лактата в зависимости от продолжительности Nmx

Таблица 2. Подключение различных механизмов энергообеспечения в зависимости от продолжительности нагрузки максимальной мощности

Продолжительность нагрузки Механизмы энергообеспечения Источники энергии Примечания
1-5 с Анаэробный алактатный (фосфатный) АТФ
6-8 с Анаэробный алактатный (фосфатный) АТФ + КрФ
9-45 с Анаэробный алактатный (фосфатный) + анаэробный лактатный (лактатный) АТФ, КрФ + гликоген Большая выработка лактата
45-120 с Анаэробный лактатный (лактатный) Гликоген По мере увеличения продолжительности нагрузки выработка лактата снижается
120-240 с Аэробный (кислородный) + анаэробный лактатный (лактатный) Гликоген
240-600 с Аэробный Гликоген + жирные кислоты Чем больше доля участия жирных кислот в энергообеспечении нагрузки, тем больше ее продолжительность

Микроповреждение мышц

Периферическое утомление может быть обусловлено не только метаболическими факторами, но и микроповреждениями мышечных волокон вследствие частых сильных сокращений.

Важно. Полагают, что такие микроповреждения приводят к послетренировочной миалгии — «крипатуре».

Эксцентрические мышечные сокращения приводят к более выраженным микроповреждениям чем концентрические или изометрические.

Определенный вклад в микроповреждении мышц при длительной эксцентрической нагрузке (например бег на длинные дистанции) могут вносить другие факторы:

  • истощение ресурсов,
  • изменения транспорта кальция,
  • и образование активных форм кислорода,
  • перекисным окислением липидов (ПОЛ).

Незначительная часть О2, поступающего в организм из воздуха, превращается в активные формы, называемые свободными радикалами. Свободные радикалы, обладая высокой химической активностью, вызывают окисление белков, липидов и нуклеиновых кислот.

Чаще всего окислению подвергается, липидный слой биологических мембран. Такое окисление называется перекисным окислением липидов (ПОЛ). Предполагают, что к повышению скорости свободно-радикального окисления приводит ацидоз и стрессорные гормоны. Чрезмерная активация ПОЛ негативно влияет на мышечную деятельность.

Так повышаемая проницаемость мембран нервных волокон и саркоплазматического ретикулума миоцитов затрудняет передачу двигательных нервных импульсов и снижает сократительные способности мышцы. Повреждение клеточных цистерн, содержащих ионы кальция, приводит к нарушению функции кальциевого насоса и ухудшения расслабляющих свойств мышц. При повреждении митохондральных мембран снижается эффективность тканевого дыхания.

Мышечное утомление

Источник: «Программы тренировок», научное изд.
Автор: профессор, доктор наук Тудор Бомпа, 2016 г.

Содержание

Мышечное утомление [ править | править код ]

Спортсмены постоянно подвергаются различным типам тренировочных нагрузок, и некоторые из них превышают порог переносимости. В результате снижается адаптация, что оказывает негативное влияние на общую результативность. Когда спортсмены выходят за пределы собственных физиологических возможностей, возникает риск накопления усталости, при этом чем больше усталость, тем сильнее проявляется негативный эффект от тренировок, который выражается в низких темпах восстановления, ухудшении координации и снижении вырабатываемой энергии.

Утомление, вызываемое тренировками, может также увеличиваться, если вне тренировочной среды спортсмен дополнительно испытывает личный стресс.

Мышечное утомление, которое является следствием упражнений, зачастую ассоциируется с такими сложными с физиологической и психологической точки зрения явлениями, как перенапряжение и перетренированность. Утомление может оказывать влияние на способность спортсмена генерировать силу или мешать ему поддерживать требуемый уровень силы. Несмотря на наличие множества исследований по теме утомления, точные локации и причины данного явления остаются неизвестными. Тем не менее тренерам и инструкторам следует изучить как можно больше информации в данной области для того, чтобы иметь возможность разрабатывать оптимальные планы, направленные на недопущение утомления, перенапряжения и перетренированности своих подопечных.

Читать еще:  Как правильно бежать 1 км на время

Роль центральной нервной системы [ править | править код ]

Несмотря на то, что очагом утомления предположительно являются мышцы, центральная нервная система также играет важную роль, поскольку уровни нейропередачи и соответствующие физиологические состояния оказывают существенное влияние на нервную передачу, уровень гормонов и, в конечном итоге, на общее утомление. Фактически, на сегодняшний день точно установлено, что центральная нервная система ограничивает результативность гораздо в большей степени, чем это предполагалось ранее [1] [2] [3] [4] .

Центральная нервная система отвечает за два основных процесса: возбуждение и блокировку. Возбуждение является стимулирующим процессом для физической активности, в то время как блокировка является процессом ограничивающим. Во время тренировки оба процесса сменяют друг друга. В результате стимулирования центральная нервная система посылает нервный импульс к работающей мышце, вызывая ее сокращение. Скорость, мощность и частота импульса напрямую зависят от состояния центральной нервной системы. Эффективность нервных импульсов возрастает, когда преобладает возбуждение (управляемое), вследствие чего спортсмен добивается хорошего результата. Когда утомление блокирует нервную клетку, мышцы сокращаются медленнее и слабее. Таким образом, электрическое стимулирование центральной нервной системы определяет количество задействованных двигательных единиц и передачу нервных импульсов, которая, в конечном итоге, оказывает влияние на силу сокращения мышц.

Производительность нервной клетки невозможно поддерживать очень долго, и она снижается под влиянием напряжения соревновательного или тренировочного процесса. Если высокий уровень интенсивности сохраняется, нервная клетка переходит в состояние блокировки для защиты от внешней стимуляции. Следовательно, утомление необходимо рассматривать как механизм самозащиты, предназначенный для недопущения ущерба для механизма сокращения мышцы.

Кроме того, интенсивные упражнения приводят к развитию ацидоза, который, в первую очередь, вызывается накоплением молочной кислоты в мышечной клетке. Высокий уровень ацидоза может оказывать негативное влияние на выделение кальция, необходимого для мышечного сокращения. В сущности, возбудительный нервный импульс может достигать мышечной мембраны, но будет заблокирован мембраной выделения кальция [1] .

Симптомы мышечного утомления [ править | править код ]

Тренеры должны следить за симптомами мышечного утомления. Опытный тренер всегда сможет заметить признаки утомления в силовых и скоростных видах спорта. Реакция спортсмена на взрывную деятельность замедляется, наблюдается легкое нарушение координации, и увеличивается продолжительность фазы контакта при беге на короткие дистанции, скачках и отскоках, прыжках и плиометрике. Основой данных видов деятельности является стимулирование волокон быстро сокращающихся мышц, на которые утомление оказывает большее влияние в сравнении с волокнами медленно сокращающихся мышц. Таким образом, даже незначительная блокировка центральной нервной системы оказывает влияние на задействование мышечных волокон.

В соревнованиях на выносливость утомление обычно проявляется в виде нарушения техники и, естественно, в постепенном снижении средней скорости движения.

Скелетная мускулатура генерирует силу за счет активации двигательных единиц и регулирования частоты их работы, которая постепенно увеличивается для повышения выработки энергии. Утомление, блокирующее мышечную активность, в некоторой степени можно нейтрализовать за счет стратегии чередования частоты. В результате при определенном состоянии утомления мышцы с большей эффективностью могут поддерживать уровень силы. Тем не менее, если продолжительность сокращений на максимальной интенсивности увеличивается, частота работы двигательных единиц снижается, что свидетельствует о более ярком проявлении блокировки [5] [6] .

Как было продемонстрировано в работах Марсдена, Медоуза и Мертона [7] , частота работы в конце 30-секундного сокращения при максимальной интенсивности снижается на 80 процентов в сравнении с частотой на момент начала сокращения. Аналогичные результаты были продемонстрированы в работах Де Лука и Эрим [8] и Конвит и др. [9] : по мере увеличения продолжительности сокращения, увеличивается активизация крупных двигательных единиц, при этом частота работы находится ниже обычного порога частоты активизации.

Результаты, продемонстрированные в указанных работах, должны насторожить сторонников теории увеличения силы (в особенности в американском футболе) исключительно за счет выполнения каждого комплекса до полного изнеможения. Об изъянах этой широко распространенной методики свидетельствует факт снижения рабочей частоты с каждым последующим повторением.

По мере выполнения сокращений истощаются источники энергии, результатом чего является более продолжительное время отдыха двигательной системы и снижение частоты сокращения мышцы, что, в свою очередь, приводит к снижению выработки энергии. Предположительно причиной такого нервно-мышечного поведения является утомление. Реальные факты должны сигнализировать практикующим специалистам о том, что непродолжительных перерывов на отдых (обычно в течение одной-двух минут) между двумя комплексами при максимальной нервной нагрузке недостаточно для расслабления и восстановления нервно-мышечной системы с целью обеспечения высокого уровня активизации при выполнении последующих комплексов.

При анализе функциональности центральной нервной системы во время утомления тренерам следует принимать во внимание утомление, ощущаемое спортсменом, и физические возможности спортсмена, которые достигаются во время тренировки. Когда физические возможности превышают уровень утомления, ощущаемого во время тестов или соревнований, увеличивается мотивация и, как следствие, способность преодолевать утомление.

Таким образом, следует развивать указанную способность преодолевать утомление во время соревнований, в особенности для тех видов спорта, в которых наблюдается высокая зависимость интеллектуальных качеств от утомления, например, в командных видах спорта, в видах спорта, где применяются ракетки, и в спортивных единоборствах.

Недостаток аденозитрифосфата, креатинфосфата и гликогена [ править | править код ]

В зависимости от вида деятельности, мышечное утомление возникает при истощении запасов мышечного гликогена или креатинфосфата в работающих мышцах [10] . Результат данного явления очевиден: работоспособность мышцы снижается.

Для краткосрочных высокоинтенсивных видов деятельности, таких как выполнение комплексов с небольшим количеством повторений или бег на короткую дистанцию, непосредственными источниками энергии для сокращения мышц являются аденозинтрифосфат и креатинфосфат. Истощение запасов данных веществ в мышцах ограничивает способность мышцы к сокращению (Karlsson и Saltin, 1971). Тем не менее во время отдыха происходит активная работа аэробной системы, целью которой является восстановление фосфатов за счет процесса, который называется аэробным фосфорилированием. Как следствие, даже для скоростно-силовых видов спорта необходима соответствующая аэробная среда [11] .

В мышце с пониженным содержанием гликогена в результате, например, продолжительной деятельности, носящей периодический характер, которая является типичной для командных видов спорта, скорость потребления аденозинтрифосфата превышает скорость его выработки. Результаты исследований показывают, что гликоген является жизненно необходимым веществом для обеспечения возможности мышцы поддерживать высокий уровень силы [12] и что выносливость во время продолжительной активности при средней и высокой нагрузке непосредственно зависит от количества гликогена в мышцах до начала упражнения [13] . Итак, причиной утомления может также стать недостаток гликогена в мышцах [14] .

Во время продолжительной работы при субмаксимальной нагрузке, например, при тренировке мышечной выносливости средней и большой продолжительности, источниками энергии являются жирная кислота и глюкоза. В ходе данного процесса также необходим кислород. При ограниченном поступлении кислорода вместо окисления углевода происходит окисление жирной кислоты. Максимальное окисление свободной жирной кислоты определяется притоком жирной кислоты к работающей мышце и аэробным состоянием спортсмена, поскольку аэробная тренировка повышает как поступление кислорода, так и окисляемость жирной кислоты [15] . Таким образом, причинами мышечного утомления являются недостаток кислорода, слабый уровень транспортировки кислорода и ненадлежащий кровоток [14] .

Накопление молочной кислоты [ править | править код ]

После нескольких секунд максимального сокращения анаэробная лактатная система начинает использовать мышечный гликоген для производства АТФ, при этом начинает накапливаться лактат. Совокупное одновременное снижение уровня креатинфосфата и накопление молочной кислоты снижает способность мышцы к максимальному сокращению [16] . Это имеет важное значение для движений, требующих быстроты или силы сокращения, поскольку их основой является сокращение мощных быстро сокращающихся волокон. Такие действия являются анаэробными, они выполняются за счет анаэробной энергии и вызывают повышение уровня выработки и накопления молочной кислоты. В ходе выполнения высокоинтенсивных комплексов до отказа (при высокой нагрузке), если общая продолжительность действий, осуществляемых под напряжением во время комплекса, превышает восемь секунд, быстро сокращающиеся волокна вырабатывают большое количество лактата. При этом блокируется любое непосредственное стимулирование, исходящее от центральной нервной системы. Таким образом, последующий высокоинтенсивный комплекс может выполняться только после более продолжительного периода отдыха.

Биохимический обмен, происходящий во время сокращения мышц, приводит к высвобождению ионов водорода, что, в свою очередь, вызывает ацидоз или еще не полностью изученное «лактатное утомление», которое, по всей видимости, определяет точку истощения [15] . Чем активнее мышца, тем выше концентрация ионов водорода и, соответственно, тем выше уровень ацидоза крови. Ионы водорода также стимулируют высвобождение гормона роста из аденогипофиза [17] [18] [19] [20] . Несмотря на название, основной эффект, оказываемый всплеском гормона роста в результате метаболически интенсивной тренировки, заключается в усилении липолиза (сжигания жира) [21] [22] [23] [24] , который является одной из причин эффективности лактатных тренировок при снижении веса. Среди других причин можно выделить высокий расход калорий в минуту и повышенное потребление кислорода после выполнения упражнений, которые усиливают обмен веществ, продолжающийся до 24 часов. Несмотря на широко распространенное убеждение в обратном, всплеск гормона роста или, по сути, тестостерона [25] , вызванный упражнениями, не оказывает влияния на рост мышц [26] .

В результате дезактивации тропонина, являющегося одним из компонентов белков, повышенный ацидоз также блокирует связующую способность кальция. Поскольку тропонин принимает активное участие в сокращении мышечной клетки, его дезактивация может привести к возникновению утомления [27] . Дискомфорт, провоцируемый ацидозом, также может быть одной из причин психологического утомления [28] . Тем не менее мышечный ацидоз не является причиной болезненного ощущения в мышцах после тренировки. На самом деле, как показано в таблице, удаление лактата происходит достаточно быстро, поскольку он окисляется мышечными волокнами, а также трансформируется печенью обратно в глюкозу (посредством цикла Кори).

Время, необходимое для удаления лактата из крови и мышц

Ссылка на основную публикацию
Adblock
detector